
QuanChain: A Dynamically Quantum-Resistant

Blockchain
Version 2.0 - Technical Whitepaper

QuanChain Team

Abstract

QuanChain represents a fundamental breakthrough in blockchain security, introducing the world's first

dynamically adaptive quantum-resistant architecture. At its core lies the Dynamic Tiered Quantum-Proof

Encryption (DTQPE) system, which provides 15 active security levels that automatically adjust cryptographic

strength based on real-time quantum computing threat assessment.

Unlike static post-quantum solutions that impose uniform and often excessive computational overhead,

QuanChain deploys precisely the protection level required at any given moment. The LQCp/h (Logical Qubit

Cost per Hour) Oracle continuously monitors quantum computing advances globally, triggering automatic

fund migrations when threat levels increase. This approach ensures users are protected against quantum

attacks without sacrificing performance during periods of lower threat.

The platform's Three-Channel Architecture separates transaction types for optimized processing: Channel 1

(Transaction Highway) delivers 200,000+ TPS for simple transfers, Channel 2 (Smart Contracts) handles

15,000+ TPS for computational operations, and Channel 3 (Data Storage) manages 2,000+ TPS for

permanent data anchoring. This specialization eliminates the bottlenecks inherent in monolithic blockchain

designs.

Proof of Coherence (PoC) consensus, combining stake weight (50%) with performance metrics (50%),

prevents the wealth concentration that plagues traditional proof-of-stake systems while rewarding validators

who adopt stronger quantum security. The Cross-Chain Referential Points (CCRP) protocol anchors

QuanChain's security proofs to established networks, creating a web of cryptographic verification that

enhances the security of the entire blockchain ecosystem.

This whitepaper provides a comprehensive technical specification of QuanChain's architecture, derived

directly from the production codebase, detailing the cryptographic foundations, consensus mechanisms,

network protocols, and economic models that make QuanChain the most advanced quantum-resistant

blockchain platform.

Table of Contents

1. Introduction

2. The Quantum Computing Threat

2.4 The Inevitable Migration Crisis

3. Dynamic Tiered Quantum-Proof Encryption (DTQPE)

4. Core Primitives and Data Types

5. Three-Channel Architecture

6. Proof of Coherence Consensus

7. Network Layer and P2P Protocol

8. Virtual Machine and Smart Contracts

9. Quantum Threat Oracle System

10. Cross-Chain Referential Points (CCRP)

11. Tokenomics and Economic Model

12. Security Analysis

13. Conclusion

1. Introduction

The emergence of quantum computing poses an existential threat to the cryptographic foundations of

modern blockchain systems. Shor's algorithm, when executed on a sufficiently powerful quantum computer,

can break the elliptic curve cryptography (ECDSA, Ed25519) that secures virtually all existing blockchain

networks. While large-scale quantum computers remain theoretical, the pace of advancement demands

proactive solutions.

QuanChain addresses this challenge through a novel approach: rather than imposing uniform post-quantum

cryptography across all operations, it implements a tiered security system that adapts to actual threat levels.

This design philosophy recognizes that:

1. Quantum threats evolve gradually: The transition from classical to quantum computing will not

occur overnight. QuanChain's adaptive approach ensures resources are allocated efficiently

throughout this transition.

2. Post-quantum cryptography has costs: Algorithms like CRYSTALS-Dilithium and SPHINCS+

provide quantum resistance but require larger signatures and increased computational overhead.

Blanket deployment is wasteful and impacts user experience.

3. Different assets require different protection: A wallet holding millions should use stronger

security than a wallet for daily transactions. QuanChain's tiered approach allows users to choose

appropriate protection levels.

4. Migration is inevitable: Even with quantum-resistant algorithms, cryptanalytic advances may

weaken specific schemes. QuanChain's built-in migration mechanisms ensure long-term security

evolution.

1.1 Design Principles

QuanChain's architecture follows five core principles:

Adaptive Security: The DTQPE system provides 15 active security levels (with 5 reserved), ranging from

efficient classical cryptography to maximum post-quantum protection. Security automatically strengthens as

quantum threats increase.

Performance Specialization: The Three-Channel Architecture eliminates the one-size-fits-all approach,

optimizing each channel for specific transaction types and achieving aggregate throughput exceeding

217,000 TPS.

Democratic Consensus: Proof of Coherence prevents whale dominance by balancing stake weight with

performance metrics, ensuring network decentralization.

Proactive Defense: The Quantum Threat Oracle continuously monitors global quantum computing

developments, triggering protective measures before threats materialize.

Interoperability: CCRP creates security bridges to other blockchain networks, strengthening the entire

ecosystem rather than operating in isolation.

1.2 Technical Foundations

QuanChain is implemented in Rust, leveraging its memory safety guarantees and performance

characteristics. The codebase is organized into modular crates:

quanchain-core: Fundamental types, primitives, and data structures

quanchain-crypto: DTQPE implementation, signature schemes, key derivation

quanchain-consensus: Proof of Coherence, validator management, block production

quanchain-network: P2P communication, mempool, gossip protocols

quanchain-vm: WebAssembly virtual machine, gas metering, precompiles

quanchain-oracle: Quantum threat monitoring, canary systems, migration triggers

quanchain-rpc: JSON-RPC API, explorer integration

quanchain-storage: RocksDB persistence, state management

2. The Quantum Computing Threat

2.1 Cryptographic Vulnerabilities

Modern blockchain security relies primarily on two cryptographic foundations:

Digital Signatures: ECDSA (secp256k1) and Ed25519 secure transaction authorization. Shor's algorithm

can derive private keys from public keys in polynomial time on a quantum computer.

Hash Functions: SHA-256 and Keccak secure block headers and Merkle trees. Grover's algorithm provides

quadratic speedup for hash preimage attacks, effectively halving security strength.

While Grover's algorithm represents a manageable threat (doubling hash output size restores security),

Shor's algorithm poses an existential risk. A quantum computer with approximately 4,000 error-corrected

logical qubits could break secp256k1 within hours.

2.2 Timeline Analysis

Current quantum computers operate with hundreds of noisy physical qubits. The path to cryptographically

relevant quantum computers (CRQC) requires:

1. Qubit scaling: Increasing physical qubit counts from hundreds to millions

2. Error correction: Implementing quantum error correction requiring 1000+ physical qubits per

logical qubit

3. Coherence time: Maintaining quantum states long enough for complex algorithms

Expert estimates for CRQC availability range from 2030 to 2045. However, "harvest now, decrypt later"

attacks mean data encrypted today may be vulnerable in the future. Blockchain transactions are

permanently public, making this threat particularly relevant.

2.3 Post-Quantum Cryptography Standards

NIST's Post-Quantum Cryptography standardization project has selected:

Digital Signatures:

CRYSTALS-Dilithium: Lattice-based, efficient, moderate signature sizes

FALCON: Lattice-based, smaller signatures, complex implementation

SPHINCS+: Hash-based, conservative security assumptions, large signatures

Key Encapsulation:

CRYSTALS-Kyber: Lattice-based key exchange

QuanChain implements all standardized signature schemes across its security levels, ensuring flexibility and

resilience against future cryptanalytic advances.

2.4 The Inevitable Migration Crisis

When quantum computing reaches cryptographically relevant capability, every blockchain using classical

cryptography will face an existential challenge: migrating existing wallets to quantum-resistant signatures.

Historical data from major blockchain upgrades and security incidents reveals a critical vulnerability in this

approach.

The Non-Migration Problem

Studies of past blockchain migrations and security-critical upgrades consistently show that 8-20% of wallet

holders fail to migrate their funds, regardless of:

Warning duration (months or even years of advance notice)

Incentive structures (fee discounts, airdrops)

Ease of migration process

Publicity and educational campaigns

This non-migration occurs due to:

1. Lost keys: Wallets whose owners have lost access but contain significant funds

2. Deceased holders: Estate planning rarely accounts for cryptocurrency migration procedures

3. Inactive users: Long-term holders who are not actively monitoring their investments

4. Technical barriers: Users who lack the technical capability to perform migrations

5. Institutional delays: Organizations with complex approval processes that cannot move quickly

6. Forgotten wallets: Small balances that users have simply forgotten about

The Reputational Cascade

When quantum computers begin breaking classical cryptographic wallets, the affected blockchain will face a

devastating reputational crisis:

1. Initial attacks: Early quantum attacks will target the highest-value unmigrated wallets

2. Media coverage: Headlines will read "Bitcoin Hacked" or "Ethereum Wallets Drained"—not

"Unmigrated Legacy Wallets Compromised"

3. Public perception: The general public will not distinguish between "the protocol was secure but

some users didn't upgrade" and "the blockchain was hacked"

4. Market reaction: Token prices will crater as confidence evaporates

5. Regulatory response: Governments may impose restrictions on "insecure" blockchain systems

The Recurring Nightmare

This crisis will not be a one-time event. As quantum computing advances, each generation of post-quantum

cryptography may eventually require upgrades:

2030s: Migration from classical to first-generation PQC

2040s: Potential migration to stronger PQC variants as cryptanalysis advances

Beyond: Future cryptographic transitions as computational capabilities evolve

Each migration cycle will leave behind another 8-20% of wallets, and each wave of quantum attacks on

legacy wallets will generate fresh headlines declaring that the blockchain "has been hacked again."

QuanChain's Solution

QuanChain's automatic migration system fundamentally solves this problem:

1. No user action required: The protocol automatically migrates funds when threat levels increase

2. Continuous protection: Migration happens proactively, before attacks are feasible

3. Zero legacy exposure: Unmigrated wallets cannot exist because migration is protocol-enforced

4. Reputation preserved: There are no "left behind" wallets to be attacked and generate negative

headlines

This is why QuanChain's dynamic, automatic approach to quantum security is not merely a technical

advantage—it is an existential necessity for any blockchain that intends to survive the quantum era with its

reputation intact.

3. Dynamic Tiered Quantum-Proof Encryption (DTQPE)

3.1 Overview

DTQPE represents QuanChain's core innovation: a hierarchical security system that provides precisely

calibrated protection based on threat levels, asset values, and user preferences. Rather than forcing all

users to pay the performance cost of maximum security, DTQPE allows efficient classical cryptography when

quantum threats are low while providing seamless migration paths to stronger protection.

3.2 Security Levels

QuanChain implements 15 active security levels organized into three tiers:

Tier 1: Classical Security (Levels 1-5)

Level Algorithm Key Size Signature Size Performance

1 ECDSA secp256k1 256 bits 64-65 bytes Maximum

2 ECDSA secp256k1 256 bits 64-65 bytes Very High

3 Ed25519 256 bits 64 bytes Very High

4 Ed25519 256 bits 64 bytes High

5 Ed25519 + Hardened Derivation 256 bits 64 bytes High

Classical security levels provide maximum performance with protection against all classical attacks. Level 1-

2 use ECDSA for compatibility with existing Ethereum tools, while Levels 3-5 use Ed25519 for improved

performance and security margins.

Tier 2: Hybrid Security (Levels 6-11)

Level Classical Post-Quantum Combined Signature

6 ECDSA Dilithium2 ~2.5 KB

7 ECDSA Dilithium3 ~3.3 KB

8 Ed25519 Dilithium2 ~2.5 KB

9 Ed25519 Dilithium3 ~3.3 KB

10 Ed25519 Falcon-512 ~700 bytes

11 Ed25519 Falcon-1024 ~1.3 KB

Hybrid levels require both classical and post-quantum signatures for validation. This provides:

Immediate security against classical attacks

Protection against quantum attacks

Defense in depth if either scheme is compromised

Tier 3: Post-Quantum Security (Levels 12-15)

Level Algorithm Signature Size Security Level

12 Dilithium3 ~3.3 KB NIST Level 3

13 Dilithium5 ~4.6 KB NIST Level 5

14 Falcon-1024 ~1.3 KB NIST Level 5

15 SPHINCS+-256s ~29 KB Maximum Conservative

Pure post-quantum levels use only quantum-resistant algorithms. Level 15 (SPHINCS+) provides maximum

security with conservative hash-based assumptions, though at significant signature size cost.

Reserved Levels (16-20)

Levels 16-20 are reserved for future cryptographic schemes, including potential hybrid combinations of

multiple post-quantum algorithms or schemes currently under development.

3.3 Key Derivation Architecture

DTQPE implements a hierarchical deterministic (HD) wallet structure where a single master seed generates

keys for all security levels:

Master Seed (64 KB)
├── Level 1 Keys (ECDSA)
│ ├── Account 0
│ ├── Account 1
│ └── ...
├── Level 5 Keys (Ed25519)
│ ├── Account 0
│ └── ...
├── Level 10 Keys (Ed25519 + Falcon-512)
│ ├── Classical Key
│ └── Post-Quantum Key
└── Level 15 Keys (SPHINCS+)
 └── ...

The derivation follows BIP-44 conventions extended for QuanChain:

m / purpose' / coin_type' / security_level' / account' / address_index
m / 44' / 600' / level' / account' / index

3.4 Migration Mechanism

When threat levels increase, DTQPE facilitates automatic migration of funds to higher security levels:

pub struct MigrationProof {
 pub source: Address, // Lower security level
 pub destination: Address, // Higher security level
 pub amount: Amount,
 pub timestamp: Timestamp,
 pub source_signature: Vec<u8>, // Signed with source's algorithm
 pub valid_epoch: u64, // Epoch window for validity
}

Migration requirements:

1. Destination level must be strictly higher than source level

2. Source signature must be valid under source level's algorithm

3. Migration must occur within the valid epoch window

4. Migration fee: 0.1% of amount + 1000 planck per level jump

Batch migrations aggregate individual migrations for efficiency:

pub struct BatchMigration {
 pub epoch: u64,
 pub target_level: SecurityLevel,
 pub migrations: Vec<MigrationProof>,
 pub merkle_root: Hash,
}

4. Core Primitives and Data Types

4.1 Addresses

QuanChain addresses encode the security level directly, ensuring cryptographic operations use appropriate

algorithms:

Format: QC{level}_{base58_payload}_{checksum}

Components:

Prefix: QC identifies QuanChain addresses

Level: Security level (1-20)

Separator: Underscore character

Payload: Base58-encoded 32-byte public key hash

Checksum: 4-character Base58 checksum

Example addresses:

QC1_8nXPWuEa1ksGHTq8UYrQQGg8UbgjRvWkXxG7QLeBB4xh_G9hN (Level 1 - Classical)
QC5_9dH6Wop4agVfx7m16xTp3G7bRTsaaBgbjq6kBy8VTk6_Edjz (Level 5 - Classical)
QC10_Hk7mLpQr9sT2vWxYz3aBcDeFgHiJkLmN4oPqRsTuVwXy_Kj8P (Level 10 - Hybrid)
QC15_ZaBcDeFgHiJkLmNoPqRsTuVwXyZ0123456789AbCdEfGh_Mn0P (Level 15 - Post-Quantum)

Address derivation:

impl Address {
 pub fn from_public_key(level: SecurityLevel, pubkey: &[u8]) -> Self {
 let hash = blake3::hash(pubkey);
 let payload = &hash.as_bytes()[..20]; // First 20 bytes
 Self::new(level, payload)
 }
}

4.2 Amounts and Planck Units

QuanChain's native currency uses a decimal system with 9 decimal places:

1 QUAN = 1,000,000,000 planck

The base unit is named "planck" after physicist Max Planck, reflecting the quantum-focused nature of the

platform. All internal calculations use planck (128-bit unsigned integers) to avoid floating-point precision

issues.

pub struct Amount {
 planck: u128,
}

impl Amount {
 pub const DECIMALS: u8 = 9;
 pub const PLANCK_PER_QUAN: u128 = 1_000_000_000;

 pub fn from_quan(quan: u64) -> Self {
 Self { planck: quan as u128 * Self::PLANCK_PER_QUAN }
 }

 pub fn from_planck(planck: u128) -> Self {
 Self { planck }
 }
}

Common amounts:

Human Readable Planck Units

1 QUAN 1,000,000,000

1,000 QUAN 1,000,000,000,000

1,000,000 QUAN 1,000,000,000,000,000

4.3 Hashes

QuanChain uses Blake3 for all hashing operations, providing 256-bit security with exceptional performance:

Format: QH_{base58_hash}

pub struct Hash([u8; 32]);

impl Hash {
 pub fn hash(data: &[u8]) -> Self {
 let digest = blake3::hash(data);
 Self(digest.into())
 }

 pub fn to_display(&self) -> String {
 format!("QH_{}", bs58::encode(&self.0).into_string())
 }
}

Merkle tree construction uses standard binary tree structure:

pub fn merkle_root(hashes: &[Hash]) -> Hash {
 if hashes.is_empty() {
 return Hash::zero();
 }
 if hashes.len() == 1 {
 return hashes[0];
 }

 let mut current_level = hashes.to_vec();
 while current_level.len() > 1 {
 let mut next_level = Vec::new();
 for chunk in current_level.chunks(2) {
 let combined = match chunk {
 [left, right] => Hash::hash(&[left.as_bytes(),
right.as_bytes()].concat()),
 [single] => *single,
 _ => unreachable!(),
 };
 next_level.push(combined);
 }
 current_level = next_level;
 }
 current_level[0]
}

4.4 Timestamps

QuanChain uses millisecond-precision timestamps:

pub struct Timestamp {
 millis: i64,
}

impl Timestamp {
 pub fn now() -> Self {

 Self {
 millis: SystemTime::now()
 .duration_since(UNIX_EPOCH)
 .unwrap()
 .as_millis() as i64,
 }
 }
}

4.5 Transactions

Transactions are the fundamental state transition primitives:

pub struct Transaction {
 pub from: Address,
 pub to: Address,
 pub value: Amount,
 pub fee: Amount,
 pub nonce: u64,
 pub security_level: SecurityLevel,
 pub tx_type: TransactionType,
 pub data: Vec<u8>,
 pub signature: Signature,
 pub timestamp: Timestamp,
}

Transaction types:

pub enum TransactionType {
 Transfer, // Simple value transfer
 Stake, // Stake tokens for validation
 Unstake, // Withdraw staked tokens
 ClaimRewards, // Claim staking rewards
 DeployContract, // Deploy smart contract
 ContractCall, // Call contract function
 DataStore, // Store data (Channel 3)
 DataUpdate, // Update stored data
 Migration, // Security level migration
 Vote, // Governance vote
 OracleSubmit, // Oracle data submission
}

Transaction hash computation:

impl Transaction {
 pub fn hash(&self) -> Hash {
 let mut hasher = blake3::Hasher::new();
 hasher.update(self.from.as_bytes());
 hasher.update(self.to.as_bytes());
 hasher.update(&self.value.planck().to_le_bytes());

 hasher.update(&self.fee.planck().to_le_bytes());
 hasher.update(&self.nonce.to_le_bytes());
 hasher.update(&[self.security_level.value()]);
 hasher.update(&[self.tx_type as u8]);
 hasher.update(&self.data);
 hasher.update(&self.timestamp.millis().to_le_bytes());
 Hash(hasher.finalize().into())
 }
}

5. Three-Channel Architecture

5.1 Design Philosophy

Traditional blockchain architectures process all transaction types through a single execution pipeline,

creating bottlenecks when different operations have fundamentally different requirements. QuanChain's

Three-Channel Architecture separates transaction processing into specialized lanes:

5.2 Channel 1: Transaction Highway

Purpose: High-frequency value transfers Target Throughput: 200,000+ TPS Block Time: 600ms Max

Block Size: 5 MB

Channel 1 optimizes for simple transfers:

No smart contract execution

Minimal state changes (balance updates only)

Parallelizable validation

Signature verification batching

Transactions on Channel 1 include:

QUAN transfers between addresses

Fee payments

Staking and unstaking operations

5.3 Channel 2: Smart Contract Lane

Purpose: Computational operations Target Throughput: 15,000+ TPS Block Time: 600ms Max Block Size:

5 MB

Channel 2 handles:

Contract deployment

Contract function calls

Complex state transitions

Event emission

The separation from Channel 1 ensures that computational operations don't impact simple transfer

throughput.

5.4 Channel 3: Data Storage Lane

Purpose: Permanent data anchoring Target Throughput: 2,000+ TPS Block Time: 600ms Max Block Size:

5 MB

Channel 3 provides:

Large data blob storage

Data availability proofs

Cross-chain anchoring via CCRP

Extended data retention policies

5.5 Block Structure

Each channel produces independent blocks that are later linked for finality:

pub struct Block {
 pub header: BlockHeader,
 pub transactions: Vec<Transaction>,
 pub channel: Channel,
}

pub struct BlockHeader {
 pub height: u64,
 pub channel: Channel,
 pub parent_hash: Hash,
 pub state_root: Hash,
 pub transactions_root: Hash,
 pub receipts_root: Hash,
 pub timestamp: Timestamp,
 pub producer: Address,
 pub validator_signature: Signature,
 pub coherence_proof: CoherenceProof,
 pub cross_channel_refs: CrossChannelRefs,
}

pub struct CrossChannelRefs {
 pub channel1_height: u64,
 pub channel1_hash: Hash,
 pub channel2_height: u64,
 pub channel2_hash: Hash,
 pub channel3_height: u64,
 pub channel3_hash: Hash,
}

5.6 Cross-Channel Synchronization

Channels synchronize through cross-references in block headers. Each block includes the latest known

heights and hashes from other channels, creating an interlinked structure:

Channel 1: [B1.1] → [B1.2] → [B1.3] → [B1.4]
 ↓ ↓ ↓
Channel 2: [B2.1] ──→ [B2.2] ──→ [B2.3]
 ↓ ↓
Channel 3: [B3.1] ────────────→ [B3.2]

This structure ensures:

1. Eventual consistency across channels

2. Deterministic finality ordering

3. Efficient parallel processing

4. Clean separation of concerns

6. Proof of Coherence Consensus

6.1 Overview

Proof of Coherence (PoC) is QuanChain's consensus mechanism, designed to prevent the wealth

concentration issues of pure Proof of Stake while incentivizing validator performance and quantum security

adoption.

6.2 Validator Selection Formula

The coherence score determines block production rights:

CoherenceScore = 0.50 × StakeScore + 0.50 × PerformanceScore

Stake Score (50%):

Logarithmic stake weighting to prevent whale dominance

Diminishing returns above certain thresholds

Minimum stake requirement: 10,000 QUAN

Performance Score (50%):

Uptime: 40% of performance

Block production success: 30% of performance

Network contribution: 20% of performance

Security level bonus: 10% of performance

6.3 Quantum Security Bonus

Validators using higher security levels receive bonus coherence:

pub fn quantum_bonus(security_level: SecurityLevel) -> f64 {
 if security_level.value() > 10 {
 0.02 * (security_level.value() - 10) as f64
 } else {
 0.0
 }
}

A validator at Level 15 receives a 10% bonus to their coherence score, incentivizing adoption of post-

quantum security.

6.4 Block Production

pub struct BlockBuilder {
 pub channel: Channel,
 pub max_block_size: usize,

 pub max_gas: u64,
 pub block_time_ms: u64,
}

impl BlockBuilder {
 pub fn build_block(&self, mempool: &Mempool, state: &State) -> Block {
 let transactions = mempool.get_for_block(
 self.channel,
 self.max_block_size
);

 let mut total_gas = 0u64;
 let mut included = Vec::new();

 for tx in transactions {
 let gas = self.estimate_gas(&tx);
 if total_gas + gas <= self.max_gas {
 included.push(tx);
 total_gas += gas;
 }
 }

 Block::new(self.channel, included, state.root())
 }
}

Block production parameters:

Block time: 600ms (configurable per testnet)

Epoch length: 144,000 blocks (~24 hours)

Max block gas: 30 billion units

Max block size: 5 MB per channel

6.5 Validator Set Management

pub struct ValidatorSet {
 pub validators: HashMap<Address, ValidatorInfo>,
 pub total_stake: Amount,
 pub active_validators: Vec<Address>,
 pub epoch: u64,
}

pub struct ValidatorInfo {
 pub address: Address,
 pub stake: Amount,
 pub security_level: SecurityLevel,
 pub performance: PerformanceMetrics,
 pub coherence_score: f64,
 pub active: bool,
 pub slashed: bool,
}

6.6 Slashing Conditions

Validators can be slashed for:

1. Double signing: Producing conflicting blocks at the same height

2. Downtime: Extended periods of non-participation

3. Invalid blocks: Producing blocks that fail validation

Slashing penalties:

Double signing: 50% of stake

Extended downtime: 1% of stake per day

Invalid blocks: 10% of stake

6.7 Epoch Transitions

At each epoch boundary:

1. Performance scores are calculated for all validators

2. Coherence scores are updated

3. Validator set is reorganized based on scores

4. Rewards are distributed

5. Slashing conditions are evaluated

7. Network Layer and P2P Protocol

7.1 libp2p Foundation

QuanChain's networking layer is built on libp2p, providing:

Peer discovery via Kademlia DHT

Encrypted connections using Noise protocol

Multiplexed streams using Yamux

NAT traversal capabilities

7.2 Network Configuration

pub struct NetworkConfig {
 pub listen_addr: String, // Default: "/ip4/0.0.0.0/tcp/30333"
 pub max_peers: usize, // Default: 50 (mainnet), 20 (testnet)
 pub bootstrap_nodes: Vec<String>,
 pub enable_mdns: bool, // Local peer discovery
 pub gossipsub_config: GossipsubConfig,
}

7.3 Gossip Protocol

Transaction and block propagation uses GossipSub with mesh networking:

pub struct GossipConfig {
 pub mesh_n: usize, // Target mesh size: 8
 pub mesh_n_low: usize, // Lower bound: 6
 pub mesh_n_high: usize, // Upper bound: 12

 pub gossip_lazy: usize, // Lazy push peers: 6
 pub gossip_factor: f64, // Gossip factor: 0.25
 pub heartbeat_interval: Duration, // 1 second
}

Topics:

/quanchain/1/tx - Transaction propagation

/quanchain/1/block - Block announcements

/quanchain/1/consensus - Consensus messages

7.4 Mempool Architecture

The mempool uses a DAG (Directed Acyclic Graph) structure to track transaction dependencies:

pub struct MempoolEntry {
 pub transaction: Transaction,
 pub added_at: Timestamp,
 pub fee_per_byte: u64,
 pub dependencies: HashSet<Hash>, // Must be included first
 pub dependents: HashSet<Hash>, // Depend on this tx
 pub priority: u64,
}

pub struct Mempool {
 transactions: HashMap<Hash, MempoolEntry>,
 by_sender: HashMap<Address, Vec<Hash>>,
 ready: VecDeque<Hash>, // No dependencies
 by_channel: HashMap<Channel, Vec<Hash>>,
}

DAG benefits:

Parallel validation of independent transactions

Automatic nonce ordering for same-sender transactions

Efficient transaction selection for block building

Configuration:

Max transactions: 100,000

Max per sender: 100

Transaction TTL: 1 hour

Max transaction size: 256 KB

7.5 Block Propagation

QuanChain implements Turbine-style block shredding for efficient propagation:

pub struct ShredConfig {
 pub data_shreds: usize, // 32 data shreds
 pub parity_shreds: usize, // 32 parity shreds
 pub shred_size: usize, // 1280 bytes
}

Reed-Solomon erasure coding allows block reconstruction from any 32 of 64 shreds, enabling:

Parallel transmission across multiple paths

Resilience to packet loss

Reduced latency for large blocks

7.6 Peer Management

pub struct PeerManager {
 pub connected_peers: HashMap<PeerId, PeerInfo>,
 pub peer_scores: HashMap<PeerId, f64>,
 pub banned_peers: HashSet<PeerId>,
}

pub struct PeerInfo {
 pub peer_id: PeerId,
 pub addr: Multiaddr,
 pub connected_at: Timestamp,
 pub last_seen: Timestamp,
 pub messages_sent: u64,
 pub messages_received: u64,
 pub latency_ms: u32,
}

Peer scoring considers:

Message validity

Response latency

Uptime

Resource contribution

8. Virtual Machine and Smart Contracts

8.1 WASM-Based Execution

QuanChain uses WebAssembly (WASM) for smart contract execution, powered by the Wasmer runtime:

pub struct VmConfig {
 pub max_memory_pages: u32, // 256 pages (16 MB)
 pub max_stack_size: usize, // 1 MB
 pub max_contract_size: usize, // 1 MB
 pub metering_type: GasMeteringType,
}

Benefits of WASM:

Language agnostic (Rust, C, AssemblyScript, etc.)

Deterministic execution

Sandboxed environment

Industry-standard toolchain

8.2 Gas Metering

Instruction-based gas metering ensures fair resource accounting:

pub struct GasMeter {
 gas_limit: u64,
 gas_used: u64,
 refund: u64,
}

// Base costs
pub const GAS_ZERO: u64 = 0;
pub const GAS_BASE: u64 = 2;
pub const GAS_VERY_LOW: u64 = 3;
pub const GAS_LOW: u64 = 5;
pub const GAS_MID: u64 = 8;
pub const GAS_HIGH: u64 = 10;

// Operation costs
pub const GAS_SLOAD: u64 = 200;
pub const GAS_SSTORE: u64 = 5_000;
pub const GAS_SSTORE_SET: u64 = 20_000;
pub const GAS_CREATE: u64 = 32_000;
pub const GAS_CALL_VALUE: u64 = 9_000;

Block gas limits:

Max block gas: 30 billion units

Target block gas: 15 billion units

8.3 Precompiled Contracts

QuanChain includes 16+ precompiled contracts for expensive operations:

Address Function Gas Cost

0x01 ecRecover 3,000

0x02 SHA256 60 + 12/word

0x03 RIPEMD160 600 + 120/word

0x04 Identity 15 + 3/word

0x05 ModExp dynamic

0x06 ecAdd 150

0x07 ecMul 6,000

0x08 ecPairing 45,000 + 34,000/pair

0x09 Blake2f 0 + 1/round

0x10 Dilithium Verify 50,000

0x11 Falcon Verify 40,000

0x12 SPHINCS+ Verify 100,000

0x13 Kyber Encapsulate 30,000

0x14 Kyber Decapsulate 30,000

0x15 Quantum RNG 10,000

Post-quantum precompiles enable efficient verification of quantum-resistant signatures within smart

contracts.

8.4 Contract State

Contract state is stored in a Merkle Patricia Trie:

pub struct ContractState {
 code_hash: Hash,
 storage_root: Hash,
 nonce: u64,
 balance: Amount,
}

Storage slots are 256-bit keys mapping to 256-bit values, following Ethereum conventions for tooling

compatibility.

8.5 Execution Environment

pub struct ExecutionContext {
 pub caller: Address,
 pub origin: Address,
 pub contract_address: Address,
 pub value: Amount,
 pub gas_limit: u64,
 pub gas_price: Amount,
 pub block_height: u64,
 pub block_timestamp: Timestamp,
 pub chain_id: u64,
}

Host functions provide blockchain state access:

host_balance(address) - Get account balance

host_storage_load(key) - Load storage slot

host_storage_store(key, value) - Store to slot

host_call(address, value, data) - Call contract

host_create(value, code) - Deploy contract

host_emit_log(topics, data) - Emit event

9. Quantum Threat Oracle System

9.1 Overview

The Quantum Threat Oracle continuously monitors global quantum computing developments to provide real-

time threat assessment. This system enables proactive security responses before attacks become feasible.

9.2 Threat Levels

QuanChain defines 7 threat levels (0-6):

Level Name LQCp/h Range Description

0 None < 0.001 No quantum threat

1 Minimal 0.001 - 0.01 Theoretical research only

2 Low 0.01 - 0.1 Small-scale demonstrations

3 Moderate 0.1 - 1.0 Significant progress

4 Elevated 1.0 - 10.0 CRQC potentially achievable

5 High 10.0 - 100.0 CRQC likely imminent

6 Critical > 100.0 CRQC available

9.3 LQCp/h Metric

Logical Qubit Cost per Hour (LQCp/h) measures the economic accessibility of quantum computation:

pub fn calculate_lqcph(params: &QuantumParams) -> f64 {
 let logical_qubits = params.physical_qubits as f64
 / params.error_correction_overhead as f64;

 let compute_hours = params.coherence_time_seconds as f64 / 3600.0;

 let cost_factor = params.operational_cost_per_hour;

 logical_qubits * compute_hours / cost_factor
}

Lower LQCp/h indicates more accessible quantum computing, representing higher threat levels.

9.4 Canary System

QuanChain implements a cryptographic canary system for early quantum attack detection:

pub struct QuantumCanary {
 pub id: u64,
 pub algorithm: CanaryAlgorithm,
 pub challenge: Hash,
 pub expected_response: Hash,

 pub created_at: Timestamp,
 pub security_level: SecurityLevel,
 pub status: CanaryStatus,
}

pub enum CanaryAlgorithm {
 EcdsaSecp256k1,
 Ed25519,
 Rsa2048,
 Rsa4096,
}

pub enum CanaryStatus {
 Active,
 Triggered,
 Expired,
 Verified,
}

Canaries are cryptographic puzzles that become solvable when specific classical algorithms are broken. A

triggered canary indicates:

1. Quantum attacks are now feasible against that algorithm

2. Immediate migration may be necessary

3. Network-wide security level increases

9.5 Migration Triggers

The oracle can trigger automatic migrations:

pub struct MigrationTrigger {
 pub trigger_type: TriggerType,
 pub from_level: SecurityLevel,
 pub to_level: SecurityLevel,
 pub effective_epoch: u64,
 pub grace_period_epochs: u64,
}

pub enum TriggerType {
 ThreatLevelIncrease,
 CanaryTriggered,
 ManualOverride,
 ScheduledUpgrade,
}

When triggered:

1. Users receive notification of pending migration

2. Grace period allows manual migration with lower fees

3. After grace period, automatic migration executes

4. Funds below threshold may remain at lower level with risk warning

9.6 Oracle Data Sources

The oracle aggregates data from multiple sources:

Academic publications and preprints

Quantum computing company announcements

Hardware specification releases

Cryptanalytic breakthrough reports

Community-submitted observations

Oracle submissions require stake-weighted voting for inclusion, preventing manipulation.

10. Cross-Chain Referential Points (CCRP)

10.1 Overview

CCRP anchors QuanChain's security proofs to established blockchain networks, creating cryptographic

bridges that enhance security through diversity.

10.2 Anchoring Mechanism

QuanChain periodically publishes commitment roots to external chains:

pub struct CcrpCommitment {
 pub quanchain_height: u64,
 pub state_root: Hash,
 pub transactions_root: Hash,
 pub validator_set_root: Hash,
 pub timestamp: Timestamp,
 pub signature: Signature,
}

Target chains:

Ethereum (primary anchor)

Bitcoin (via OP_RETURN)

Other EVM chains as needed

10.3 Security Benefits

CCRP provides:

1. Checkpointing: External chains provide tamper-evident records of QuanChain state

2. Long-range attack prevention: Historical states are anchored externally

3. Cross-chain verification: Light clients can verify QuanChain state via anchors

4. Diversity: Security doesn't depend solely on QuanChain consensus

10.4 Verification Protocol

External verifiers can validate QuanChain state:

pub fn verify_ccrp_proof(
 commitment: &CcrpCommitment,
 proof: &MerkleProof,

 external_anchor: &ExternalAnchor,
) -> bool {
 // Verify commitment is anchored on external chain
 let anchor_valid = external_anchor.verify_commitment(commitment);

 // Verify Merkle proof against commitment
 let proof_valid = proof.verify(commitment.state_root);

 anchor_valid && proof_valid
}

11. Tokenomics and Economic Model

11.1 Token Distribution

Total Supply: 10,000,000,000 QUAN (10 billion)

Allocation Percentage Amount Vesting

Public Sale 25% 2.5B Immediate

Team & Advisors 15% 1.5B 4-year linear

Foundation 20% 2B Treasury

Ecosystem Fund 15% 1.5B 5-year grants

Staking Rewards 20% 2B Emission schedule

Initial Liquidity 5% 500M Immediate

11.2 Staking Economics

Minimum Stake: 10,000 QUAN Lock Period: 7 days for unstaking Reward Rate: Variable based on total

stake and performance

Annual emission schedule:

Year Emission Rate Total Emitted

1 8% 160M

2 6% 120M

3 4% 80M

4 3% 60M

5+ 2% 40M/year

11.3 Fee Structure

Transaction Fees:

Base transfer: 0.00001 QUAN (~$0.001 at $100 QUAN)

Smart contract: Gas-based pricing

Data storage: Size-based pricing

Fee Distribution:

50% to block producer

30% to validator set

20% burned (deflationary)

11.4 Security Level Pricing

Higher security levels incur additional fees due to larger signatures:

Level Signature Size Fee Multiplier

1-5 64-65 bytes 1.0x

6-9 2.5-3.3 KB 1.5x

10-11 0.7-1.3 KB 1.3x

12-13 3.3-4.6 KB 1.8x

14 1.3 KB 1.4x

15 29 KB 3.0x

11.5 Migration Incentives

To encourage proactive security upgrades:

Early migration (before threat level increase): 0.05% fee

Standard migration: 0.1% fee

Emergency migration (after threat increase): 0.2% fee

Grace period violation: 0.5% fee

12. Security Analysis

12.1 Cryptographic Security

Classical Attacks:

ECDSA secp256k1: 128-bit security

Ed25519: 128-bit security

Blake3: 256-bit security

Quantum Attacks:

Dilithium2: NIST Level 2 (~AES-128)

Dilithium3: NIST Level 3 (~AES-192)

Dilithium5: NIST Level 5 (~AES-256)

Falcon-512: NIST Level 1

Falcon-1024: NIST Level 5

SPHINCS+-256s: 256-bit post-quantum

12.2 Consensus Security

Attack Resistance:

33% Byzantine tolerance

Stake-weighted voting prevents Sybil attacks

Performance requirements prevent stake-only dominance

Slashing deters malicious behavior

Long-Range Attacks:

CCRP checkpoints provide external anchoring

Weak subjectivity period: 2 weeks

Validator set changes require multiple epochs

12.3 Network Security

Eclipse Attacks:

Minimum peer diversity requirements

Peer scoring prevents isolation

Bootstrap node redundancy

DoS Resistance:

Rate limiting per peer

Mempool size limits

Transaction fee requirements

12.4 Smart Contract Security

Execution Isolation:

WASM sandboxing

Gas limits prevent infinite loops

Memory limits prevent exhaustion

Reentrancy Protection:

Check-effects-interactions pattern enforced

Reentrancy guard precompile available

13. Conclusion

QuanChain represents a paradigm shift in blockchain security, providing the first truly adaptive approach to

the quantum computing threat. Rather than imposing uniform overhead, the DTQPE system delivers

precisely calibrated protection that evolves with the threat landscape.

The Three-Channel Architecture eliminates the false choice between throughput and security, delivering

217,000+ aggregate TPS while maintaining the strongest available cryptographic protection. Proof of

Coherence consensus prevents the wealth concentration inherent in traditional PoS systems, ensuring long-

term decentralization.

The Quantum Threat Oracle and automatic migration mechanisms ensure users remain protected as

quantum computing advances, without requiring manual intervention or technical expertise. CCRP anchoring

creates a web of security that strengthens the entire blockchain ecosystem.

QuanChain is not merely quantum-resistant—it is quantum-adaptive, security-optimized, and future-ready.

As quantum computing evolves from theoretical to practical, QuanChain will evolve with it, always staying

one step ahead.

References

1. Shor, P.W. (1994). Algorithms for quantum computation: discrete logarithms and factoring.

2. Grover, L.K. (1996). A fast quantum mechanical algorithm for database search.

3. NIST Post-Quantum Cryptography Standardization Process (2022).

4. Ducas, L., et al. (2018). CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme.

5. Fouque, P.A., et al. (2018). Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU.

6. Bernstein, D.J., et al. (2019). SPHINCS+: Submission to the NIST Post-Quantum Project.

7. libp2p Specification (2023). https://github.com/libp2p/specs

8. WebAssembly Specification (2023). https://webassembly.github.io/spec/

9. Blake3 Cryptographic Hash Function (2020). https://github.com/BLAKE3-team/BLAKE3

Appendix A: Address Format Specification

Address = "QC" + Level + "_" + Payload + "_" + Checksum
Level = 1-20 (decimal)
Payload = Base58(PublicKeyHash[0:20])
Checksum = Base58(Blake3(Address[0:-5])[0:4])

Appendix B: Transaction Encoding

Transaction = {
 from: Address (variable),
 to: Address (variable),
 value: u128 (16 bytes),
 fee: u128 (16 bytes),
 nonce: u64 (8 bytes),
 security_level: u8 (1 byte),
 tx_type: u8 (1 byte),
 data_length: u32 (4 bytes),
 data: bytes (variable),
 signature: bytes (variable based on security level)
}

Appendix C: RPC Methods

Chain Methods

chain_getBalance(address) - Get account balance

chain_getAccount(address) - Get full account info

chain_getBlock(channel, height, include_txs) - Get block

chain_getTransaction(hash) - Get transaction

chain_getTransactionReceipt(hash) - Get receipt

chain_getHeights() - Get current heights for all channels

chain_getRecentTransactions(limit) - Get recent transactions

Transaction Methods

https://github.com/libp2p/specs
https://webassembly.github.io/spec/
https://github.com/BLAKE3-team/BLAKE3

tx_send(tx) - Submit transaction

tx_sendRaw(signed_tx) - Submit signed transaction

tx_simulate(tx) - Simulate execution

tx_estimateGas(tx) - Estimate gas

Network Methods

net_version() - Get network ID

net_nodeInfo() - Get node information

net_peerCount() - Get peer count

Validator Methods

validator_getActiveSet() - Get active validators

validator_getInfo(address) - Get validator info

Oracle Methods

oracle_getQuantumThreatLevel() - Get current threat level

oracle_getCanaryStatus() - Get canary statuses

Document Version: 2.0 Last Updated: December 2024 QuanChain Protocol Version: 1.0.0

